A Quest for Batteries to Alter the Energy Equation

28batt-600ALLENTOWN, Pa. — In a gleaming white factory here, Bob Peters was gently feeding sheets of chemical-coated foil one afternoon recently into a whirring machine that cut them into precise rectangles. It was an early step in building a new kind of battery, one smaller than a cereal box but with almost as much energy as the kind in a conventional automobile.
The goal of Mr. Peters, 51, and his co-workers at International Battery, a high-tech start-up, is industrial revolution. Racing against other companies around the globe, they are on the front lines of an effort to build smaller, lighter, more powerful batteries that could help transform the American energy economy by replacing gasoline in cars and making windmills and solar cells easier to integrate into the power grid.

This summer the Obama administration plans to announce how it will distribute some $2 billion in stimulus grants to companies that make such advanced batteries for hybrid or all-electric vehicles and related components. International Battery is vying for a modest chunk of it.

The hope is that the grants will spur far higher levels of experimentation and production, pushing down the costs that have prevented these batteries from entering the mass market.

The batteries would not only replace the fuel tanks in millions of cars and trucks, but would also make windmills and solar cells more practical, by absorbing excess energy when their production jumps and giving it back when the wind suddenly dies or the sun goes behind a cloud.

But first, companies like International Battery will have to tweak the chemistry of their devices and improve the manufacturing process, bolstering the batteries’ capabilities. And prices will have to come down — a problem that is far more daunting when it comes to batteries for vehicles and the grid, because the packs are hundreds or thousands of times the size of those for handheld electronics.

Nearly all battery research now focuses on lithium ion batteries, which made their consumer debut in 1991 and have since replaced nickel-cadmium and nickel-metal-hydride technologies in many portable electronics.

Lithium is the third-lightest element on the periodic table, which allows for far greater energy density. A lithium ion battery that will move a car one mile weighs less than half as much as a nickel metal hydride and one-sixth as much as lead acid.

Advanced battery manufacturing is mostly based in Japan, China, Taiwan and South Korea, where laptop computers and similar devices are built.

International Battery bought machines from China that manufacture the components and has been tweaking them to make them run faster, use fewer materials and produce a better product. Each button on the control panels is labeled in Chinese characters, with English penciled in by hand underneath. Near Mr. Peters’s machine, a cardboard box awaiting unpacking bears hand lettering that says, “Glass Please Carefully.”

Other companies are also trying out new chemistries and materials, at the positive and negative terminals of the battery. As technicians try to improve battery assembly, the first requirement is a strikingly clean work environment. Mr. Peters, in goggles and spotless rubber gloves, declined to shake hands recently, just as a surgeon might on the way into the operator room.

The gloves protect him from the chemicals in the battery, which include nickel, cobalt and manganese, and shield the battery’s delicate tissues from the natural oils on his fingers.

“We don’t want any debris,” said Mr. Peters, who formerly worked at a nearby factory that made bulletproof glass. (International Battery’s pristine new showplace was previously an appliance repair shop.)

The engineers face a difficult challenge. The batteries have to store a lot of energy in a small, light package, scoring high in a quality known as energy density. They also have to absorb energy and give it back quickly, a factor called power density.

Think of a battery as a bottle for energy, and the power density as the size of the bottle’s neck. Good power density means a shape like a peanut butter jar, easy to fill or empty; low power density is more like a wine jug with a narrow neck.

The batteries have to charge quickly and withstand thousands of cycles of charge and discharge. They have to dissipate heat without catching fire, a product problem that a giant like Apple Computer could survive but a start-up electric car company probably could not. The batteries must function in Maine winters and Texas summers.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s